{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 14 Standard deviation of residuals or root mean square deviation (RMSD)"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n"
],
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"%%html\n",
""
]
},
{
"cell_type": "code",
"execution_count": 80,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"from pandas import Series, DataFrame\n",
"import matplotlib.pyplot as plt\n",
"import seaborn as sns\n",
"from scipy import stats\n",
"from sklearn.linear_model import LinearRegression\n",
"from sklearn.metrics import mean_squared_error"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"[khanacademy](https://www.khanacademy.org/math/ap-statistics/bivariate-data-ap/assessing-fit-least-squares-regression/v/standard-dev-residuals?modal=1)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
""
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"x = np.array([1, 2, 2, 3])\n",
"y = np.array([1, 2, 3, 6])"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"slope, intercept, rvalue, pvalue, stderr = stats.linregress(x, y)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"yhat = intercept + slope * x"
]
},
{
"cell_type": "code",
"execution_count": 58,
"metadata": {},
"outputs": [],
"source": [
"x_test = x.reshape(-1, 1)\n",
"y_test = y.reshape(-1, 1)\n",
"reg = LinearRegression()\n",
"reg.fit(x_test, y_test)\n",
"y_pred = reg.predict(x_test)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [],
"source": [
"df = DataFrame({\n",
" 'x': x,\n",
" 'y': y,\n",
" 'yhat': yhat,\n",
" '(y - yhat)**2': (y - yhat)**2\n",
"})"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" x | \n",
" y | \n",
" yhat | \n",
" (y - yhat)**2 | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 1 | \n",
" 1 | \n",
" 0.5 | \n",
" 0.25 | \n",
"
\n",
" \n",
" 1 | \n",
" 2 | \n",
" 2 | \n",
" 3.0 | \n",
" 1.00 | \n",
"
\n",
" \n",
" 2 | \n",
" 2 | \n",
" 3 | \n",
" 3.0 | \n",
" 0.00 | \n",
"
\n",
" \n",
" 3 | \n",
" 3 | \n",
" 6 | \n",
" 5.5 | \n",
" 0.25 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" x y yhat (y - yhat)**2\n",
"0 1 1 0.5 0.25\n",
"1 2 2 3.0 1.00\n",
"2 2 3 3.0 0.00\n",
"3 3 6 5.5 0.25"
]
},
"execution_count": 25,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(4,)"
]
},
"execution_count": 28,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"y.shape"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"$$ \\sqrt{ \\frac{ \\sum (residual)^{2} }{n-2} } $$\n",
"\n",
"$$ \\sqrt { \\frac{ \\sum (y-\\hat{y})^{2} }{n-2} } $$"
]
},
{
"cell_type": "code",
"execution_count": 74,
"metadata": {},
"outputs": [],
"source": [
"def rmsd(y, yhat, i=0):\n",
" n = len(y)\n",
" return np.sqrt(np.sum((y - yhat) ** 2) / (n - i))"
]
},
{
"cell_type": "code",
"execution_count": 79,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"divided by 1: \t 0.7071067811865476\n",
"divided by 2: \t 0.8660254037844386\n",
"divided by 0: \t 0.6123724356957945\n"
]
}
],
"source": [
"print('divided by 1: \\t', rmsd(y, yhat, 1))\n",
"print('divided by 2: \\t', rmsd(y, yhat, 2))\n",
"print('divided by 0: \\t', rmsd(y, yhat))"
]
},
{
"cell_type": "code",
"execution_count": 81,
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"text/plain": [
"0.6123724356957947"
]
},
"execution_count": 81,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"stderr"
]
},
{
"cell_type": "code",
"execution_count": 82,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0.6123724356957945"
]
},
"execution_count": 82,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"mean_squared_error(y_test, y_pred, squared=False)"
]
},
{
"cell_type": "code",
"execution_count": 45,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Text(0, 0.5, 'Score')"
]
},
"execution_count": 45,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAEGCAYAAABvtY4XAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO3de3xU9Z3/8dcnARISbsYQLiUkiBAMIIgBQdkVVqxS0bgP2p+3Sqv1srvsumt/P3/2hhFcW+tli6tVV7GVrZfVbXWjgCLqgvZH0Y1XTCBckwaIhGu4hFzn8/tjBouUS4DMnMzk/Xw88mAyc2a+7xxP3p5858w55u6IiEjiSQo6gIiIRIcKXkQkQangRUQSlApeRCRBqeBFRBJUp6ADHCozM9Nzc3ODjiEiEjc+/PDD7e7e+0iPtauCz83NpaSkJOgYIiJxw8wqj/aYpmhERBKUCl5EJEGp4EVEEpQKXkQkQangRUQSlApeRCRBRbXgzayXmf3WzFab2SozmxDN8URE4kUoFOKLL76gsrKSL774glAo1OZjRHsP/mHgDXcfBowCVkV5PBGRdi8UCrFy5UrGjx9Pbm4u48ePZ+XKlW1e8lEreDPrAfwl8DSAuze6++5ojSciEi9qamooLCyksjL8GaXKykoKCwupqalp03GiuQd/BrAN+LWZfWxm88ws/fCFzOwWMysxs5Jt27ZFMY6ISPvQ0NDwZbkfVFlZSUNDQ5uOE82C7wSMAR5393OA/cAPDl/I3Z909wJ3L+jd+4inUxARSSgpKSnk5OR85b6cnBxSUlLadJxoFvwmYJO7vx/5/reEC19EpEPLysqiuLj4y5LPycmhuLiYrKysNh0naicbc/cvzKzKzPLcvRy4CCiL1ngiIvEiKSmJkSNHsmLFChoaGkhJSSErK4ukpLbd54722ST/AXjOzLoAG4AbojyeiEhcSEpKom/fvlEdI6oF7+6fAAXRHENERI5Mn2QVEUlQKngRkQSlghcRSVAqeBGRBKWCFxFJUCp4EZEEpYIXEUlQKngRkQSlghcRSVAqeBGRBKWCFxEJyBe19TS3tP2l+g5SwYuIxFhDcwu//O91TH5wKc+9/8eojRPts0mKiMghlpbXMPu1MjZu388lw/vwV8Pa9hzwh1LBi4jEQNXOOuYsKGNJ2VbOyExn/o3juHBodK9ip4IXEYmi+qYWHl+6nieWrSc5yfjB1GHceMEgunSK/gy5Cl5EJArcnSVlW5mzoIxNuw5w+aj+/Ogbw+jXs2vMMqjgRUTa2IZt+5j9WhnL1mxjaJ9uvHDzeCYMPj3mOVTwIiJtpK6xmUfeWce89zaQ2imZWdPymTEhh87JwRywqIIXETlF7s7CldXcu3AV1bX1TB8zgDun5pHVPTXQXCp4EZFTsGbrXoqKS/nDhh0M79+DR689h3NzMoKOBajgRUROyt76Jh5+ay3PLK8gPaUT91w5gmvHDSQ5yYKO9iUVvIjICXB3Xvl4Mz9dtJod+xu4euxA7rgkj4z0LkFH+zMqeBGRVirdUktRcSkllbsYnd2LX323gLMH9Ao61lGp4EVEjqO2romHlpTz7IpKeqV14f7pZ/PNcweQ1I6mY45EBS8ichShkPNSSRX3Ly5nd10jMybkcvuUofRM6xx0tFZRwYuIHMEnVbspKv6cTzfVMjb3NGZfcR75/XsEHeuERLXgzawC2Au0AM3uXhDN8URETtWOfQ08sLicF0uqyOyWwtyrRlM4uj9m7Xs65khisQc/2d23x2AcEZGT1twS4vkP/siDi8upa2zhpomDuO2iIXRPjY/pmCPRFI2IdHglFTuZVVzKquo9XHDm6dx9+XCG9OkedKxTFu2Cd+BNM3Pg39z9ySiPJyLSajV76rnv9dW8/PFm+vdM5bHrxjB1RN+4nI45kmgX/AXuvsXMsoAlZrba3d89dAEzuwW4BWDgwIFRjiMiAk0tIeYvr2DuW2tpbA7x95PP5O8mDyatS2JNakT1p3H3LZF/a8zsFWAc8O5hyzwJPAlQUFDg0cwjIrJ83XaKXi1lbc0+JuX1pujy4QzKTA86VlREreDNLB1Icve9kdtfB+ZEazwRkWPZsvsA9y5axcLPqsnO6Mq8GQVcdFZWwkzHHEk09+D7AK9EVl4n4Hl3fyOK44mI/JmG5hbmvbeRR99ZR8id7188lFv+8gxSOycHHS3qolbw7r4BGBWt1xcROZ6l5TXMfq2Mjdv3c8nwPvzksnyyM9KCjhUzifWOgogIULWzjjkLylhStpUzMtOZf+M4LhzaO+hYMaeCF5GEUd/UwuNL1/PEsvUkJxl3XjqM700cRJdOwVwyL2gqeBGJe+7OkrKtzFlQxqZdB7h8VH9+9I1h9OvZNehogVLBi0hc27BtH7NfK2PZmm0M7dONF24ez4TBpwcdq11QwYtIXKprbOaRd9Yx770NpHZKZta0fGZMyKFzcsecjjkSFbyIxBV3Z+HKau5duIrq2nqmjxnAnVPzyOqeGnS0dkcFLyJxY83WvRQVl/KHDTvI79eDR645h4LcjKBjtVsqeBFp9/bWN/HwW2t5ZnkF6SmduOfKEVw7biDJ7fySeUFTwYtIu+XuvPLxZn66aDU79jdw9diB3HFJHhnpXYKOFhdU8CLSLpVuqaWouJSSyl2Mzu7Fr75bwNkDegUdK66o4EWkXamta+KhJeU8u6KSXmlduH/62Xzz3AEkaTrmhKngRaRdCIWcl0qquH9xObvrGpkxIZfbpwylZ1r8XjIvaCp4EQncJ1W7KSr+nE831TI29zRmX3Ee+f17BB0r7qngRSQwO/Y18MDicl4sqSKzWwpzrxpN4ej+CX2O9lhSwYtIzDW3hHj+gz/y4OJy6hpbuGniIG67aAjdUzUd05ZU8CISUyUVO5lVXMqq6j1ccObp3H35cIb06R50rISkgheRmKjZU899r6/m5Y83079nKo9dN4apI/pqOiaKVPAiElVNLSHmL69g7ltraWwOMXPyYGZOPpO0LqqfaNMaFpGoWb5uO0WvlrK2Zh+T8npTdPlwBmWmBx2rw1DBi0ib27L7APcuWsXCz6rJzujKvBkFXHRWlqZjYkwFLyJtpqG5hXnvbeTRd9YRcuf2KUO59cIzSO2cHHS0DkkFLyJtYml5DbNfK2Pj9v1cMrwPP7ksn+yMtKBjdWgqeBE5JVU765izoIwlZVs5IzOd+TeO48KhvYOOJajgReQk1Te18PjS9TyxbD3JScadlw7jexMH0aWTLpnXXqjgReSEuDtLyrYyZ0EZm3Yd4PJR/fnRN4bRr2fXoKPJYVTwItJqG7btY/ZrZSxbs42hfbrxws3jmTD49KBjyVGo4EXkuOoam3nknXXMe28DqZ2SmTUtnxkTcuicrOmY9izqBW9myUAJsNndp0V7PBFpO+7OwpXV3LtwFdW19UwfM4A7p+aR1T016GjSCrHYg/9HYBWgkzuLxJE1W/dSVFzKHzbsIL9fDx655hwKcjOCjiUnIKoFb2YDgMuAe4HvR3MsEWkbe+ubePittTyzvIL0lE7cc+UIrh03kGRdMi/uRHsPfi7wf4GjngvUzG4BbgEYOHBglOOIyNG4O698vJmfLlrNjv0NXD12IHdckkdGepego8lJilrBm9k0oMbdPzSzSUdbzt2fBJ4EKCgo8GjlEZGjK91SS1FxKSWVuxiV3Yunv1PAqOxeQceSUxTNPfgLgCvM7BtAKtDDzJ51929HcUwROQG1dU08tKScZ1dU0iutC/dPP5tvnjuAJE3HJISoFby7/xD4IUBkD/7/qNxF2odQyHmppIr7F5ezu66R68fn8P2L8+iZpkvmJRIdBy/SwXxStZui4s/5dFMtY3NPY/YV55HfXwe5JaKYFLy7LwWWxmIsETmyHfsaeGBxOS+WVJHZLYW5V42mcHR/naM9gWkPXiTBNbeEeP6DP/Lg4nLqGlu4aeIgbrtoCN1TNR2T6FTwIgmspGIns4pLWVW9hwvOPJ27Lx/OkD5HPWpZEowKXiQB1eyp577XV/Pyx5vp3zOVx64bw9QRfTUd08Go4EUSSFNLiPnLK5j71loam0PMnDyYmZPPJK2LftU7Iv1XF0kQy9dtp+jVUtbW7GNSXm+KLh/OoMz0oGNJgFTwInFuy+4D3LtoFQs/qyY7oyvzZhRw0VlZmo4RFbxIvGpobmHeext59J11hNy5fcpQbr3wDFI7JwcdTdoJFbxIHFpaXsPs18rYuH0/lwzvw08uyyc7Iy3oWNLOqOBF4kjVzjrmLChjSdlWBmWmM//GcVw4tHfQsaSdUsGLxIH6phYeX7qeJ5atJznJuPPSYdw4MZeUTpqOkaNrdcGb2URgiLv/2sx6A93cfWP0oomIu7OkbCtzFpSxadcBpp3djx9fdhb9enYNOprEgVYVvJkVAQVAHvBroDPwLOFTAotIFGzYto/Zr5WxbM02hvbpxvM3n8f5gzODjiVxpLV78H8NnAN8BODuW8xMn3cWiYK6xmYeeWcd897bQGqnZGZNy2fGhBw6JycFHU3iTGsLvtHd3cwcwMz06QmRNubuLFxZzb0LV1FdW8/0MQO4c2oeWd1Tg44mcaq1Bf+Smf0b0MvMbgZuBJ6KXiyRjmXN1r0UFZfyhw07yO/Xg0euOYeC3IygY0mca1XBu/uDZnYxsIfwPPxd7r4kqslEOoC99U08/NZanlleQXpKJ+65cgTXjhtIsi6ZJ23guAVvZsnAYnefAqjURdqAu/PKx5v56aLV7NjfwNVjB3LHJXlkpHcJOpokkOMWvLu3mFmdmfV099pYhBJJZKVbaikqLqWkchejsnvx9HcKGJXdK+hYkoBaOwdfD6w0syXA/oN3uvttUUklkoBq65p4aEk5z66opFdaF+6ffjbfPHcASZqOkShpbcEvjHyJyAkKhZyXSqq4f3E5u+sauX58Dt+/OI+eabpknkRXa99knW9mXYChkbvK3b0perFEEsMnVbspKv6cTzfVMjb3NGZfcR75/XsEHUs6iNZ+knUSMB+oAAzINrPvuPu70YsmEr927GvggcXlvFhSRWa3FOZeNZrC0f11jnaJqdZO0TwEfN3dywHMbCjwAnButIKJxKPmlhDPf/BHHlxcTl1jCzdNHMRtFw2he6qmYyT2WlvwnQ+WO4C7rzEzbbEihyip2Mms4lJWVe/h/MGnM/uK4QzpozN6SHBaW/AlZvY08JvI99cBH0Ynkkh8qdlTz32vr+bljzfTv2cqj103hqkj+mo6RgLX2oL/W2AmcBvhOfh3gceiFUokHjS1hJi/vIK5b62lsTnEzMmDmTn5TNK66DIL0j60dkvsBDzs7v8CX366NSVqqUTaueXrtlP0ailra/YxKa83RZcPZ1CmzsEn7UtrC/5tYAqwL/J9V+BN4PyjPcHMUgnv6adExvmtuxedfFSR2AuFQtTU1NDQ0EBKSgrNXbrzszfKWfhZNdkZXXlqRgFTzsrSdIy0S60t+FR3P1juuPs+MzveFX4bgL+KLNsZ+L2Zve7uK042rEgshUIhVq5cSWFhIZWbNpNz8Q2kjLkSzLh9ylBuvfAMUjvrknnSfrW24Peb2Rh3/wjAzAqAA8d6grs7f9rj7xz58pMNKhJrNTU1FBYWsjXpdPrf+CPI+BoNlR/z8qxvMyYvJ+h4IsfV2oL/J+A/zWwL4ZLuD1x1vCdF5uo/BM4Efunu7x9hmVuAWwAGDhzYyjgi0VexbS91Y75Nn6ETaNq5ma0v3UX9xo84/d5vBx1NpFWOeQ0wMxtrZn3d/X+AYcCLQDPwBnDcC267e4u7jwYGAOPMbMQRlnnS3QvcvaB3794n9UOItKX6phZ+sWQN3/mPtaQNGsOupb9my69mUr/xI3JyckhJ0fEFEh+Od5HHfwMaI7cnAD8CfgnsAp5s7SDuvhtYClx64hFFYsPdebP0C6b8yzIefnstF+f35elv5nDaFyXQ0kxOTg7FxcVkZWUFHVWkVY43RZPs7jsjt68CnnT33wG/M7NPjvVEM+sNNLn7bjPrSvgonJ+fcmKRKNiwbR+zXytj2ZptDO3TjedvPo/zB2cSCoVYsWLFl0fRZGVlkZSki19LfDhuwZtZJ3dvBi4iMlfeyuf2A+ZH5uGTgJfcfcHJRxVpe3WNzTzyzjrmvbeB1E7JzJqWz4wJOXRODpd4UlISffv2DTilyMk5Xkm/ACwzs+2Ej5p5D8DMzgSOeXUnd/8MOKctQoq0NXdn4cpq7l24iuraeqaPGcCdU/PI6p4adDSRNnPMgnf3e83sbcJ7429GDn2E8B75P0Q7nEg0rNm6l6LiUv6wYQf5/XrwyDXnUJCbEXQskTbXmmuy/tkHk9x9TXTiiETP3vomHn5rLc8sryA9pRP3XDmCa8cNJFmXzJMEpbMiScJzd175eDM/XbSaHfsbuHpsNndcMoyM9C5BRxOJKhW8JLTSLbUUFZdSUrmLUdm9ePo7BYzK7hV0LJGYUMFLQqqta+KhJeU8u6KSXmld+Pn0kXzr3GySNB0jHYgKXhJKKOS8VFLF/YvL2V3XyPXjc/j+xXn0TNMFyKTjUcFLwvi0ajd3FX/Op5tqGZt7GrOvOI/8/j2CjiUSGBW8xL0d+xp4YHE5L5ZUkdkthblXjaZwdH+do106PBW8xK2WkPPc+5U8uLicusYWbpo4iNsuGkL3VE3HiIAKXuJUScVO7ioupax6D+cPPp3ZVwxnSJ/uQccSaVdU8BJXavbUc9/rq3n5483075nKY9eNYeqIvpqOETkCFbzEhaaWEPOXVzD3rbU0NoeYOXkwMyefSVoXbcIiR6PfDmn3lq/bTtGrpayt2cekvN4UXT6cQZnpQccSafdU8NJubdl9gHsXrWLhZ9VkZ3TlqRkFTDkrS9MxIq2kgpd2p6G5hXnvbeTRd9YRcuf2KUO59cIzSO2cHHQ0kbiigpd2ZWl5DbNfK2Pj9v18Pb8Ps6blk52RFnQskbikgpd2oWpnHXMWlLGkbCuDMtN55oaxTMrTtU9FToUKXgJV39TC40vX88Sy9SQnGXdeOowbJ+aS0knTMSKnSgUvgXB3lpRtZc6CMjbtOsC0s/vx48vOol/PrkFHE0kYKniJuY3b93P3q6UsW7ONoX268fzN53H+4MygY4kkHBW8xExdYzOPvrOOee9tJKVTErOm5TNjQg6dk5OCjiaSkFTwEnXuzsKV1dy7cBXVtfVMHzOAO6fmkdU9NehoIglNBS9RtXbrXopeLWX5+h3k9+vBI9ecQ0FuRtCxRDoEFbxExd76Jh5+ay3PLK8gPaUT91w5gmvHDSRZl8wTiRkVvLQpd+eVjzfzs9dXs31fA1ePzeaOS4aRkd4l6GgiHY4KXtpM6ZZaiopLKancxajsXsybUcCo7F5BxxLpsFTwcspq65p4aEk5z66opFdaF34+fSTfOjebJE3HiAQqagVvZtnAvwN9gRDwpLs/HK3xJPZCIeelkiruX1zO7rpGrh+fw/cvzqNnWuJcMi8UClFTU0NDQwMpKSlkZWWRlKTDOiU+RHMPvhn43+7+kZl1Bz40syXuXhbFMSVGPq3azV3Fn/PpplrG5p7G7CvOI79/j6BjtalQKMTKlSspLCyksrKSnJwciouLGTlypEpe4kLUCt7dq4HqyO29ZrYK+Bqggo9jO/Y18MDicl4sqSKzWwpzrxpN4ej+CXmO9pqami/LHaCyspLCwkJWrFhB3759A04ncnwxmYM3s1zgHOD9Izx2C3ALwMCBA2MRR05CS8h57v1KHlxcTl1jCzdNHMRtFw2he2riTMccrqGh4ctyP6iyspKGhoaAEomcmKgXvJl1A34H/JO77zn8cXd/EngSoKCgwKOdR05cScVO7ioupax6D+cPPp3ZVwxnSJ/uQceKupSUFHJycr5S8jk5OaSkpASYSqT1olrwZtaZcLk/5+4vR3MsaXs1e+q57/XVvPzxZvr3TOWx68YwdUTfhJyOOZKsrCyKi4v/bA4+K0vnqZf4EM2jaAx4Gljl7v8SrXGk7TW1hJi/vIK5b62lsTnEzMmDmTn5TNK6dKyjapOSkhg5ciQrVqzQUTQSl6L5G3sBcD2w0sw+idz3I3dfFMUx5RQtX7+douJS1tbsY1Jeb4ouH86gzPSgYwUmKSlJb6hK3IrmUTS/BzrG3/IJYMvuA9y7aBULP6smO6MrT80oYMpZWR1mOkYkEXWsv7nlzzQ0t/D07zfyyNvrCLlz+5Sh3HrhGaR21iXzROKdCr4DW1pew+zXyti4fT9fz+/DrGn5ZGekBR1LRNqICr4DqtpZx5wFZSwp28qgzHSeuWEsk/J0ZIhIolHBdyD1TS08sWw9jy9dT3KSceelw7hxYi4pnTQdI5KIVPAdgLuzpGwrcxaUsWnXAaad3Y8fX3YW/Xp2DTqaiESRCj7Bbdy+n7tfLWXZmm0M7dON528+j/MHZwYdS0RiQAWfoOoam3n0nXXMe28jKZ2SmDUtnxkTcuicrA/piHQUKvgE4+4sXFnNvQtXUV1bz/QxA7hzah5Z3VODjiYiMaaCTyBrt+6l6NVSlq/fQX6/HjxyzTkU5GYEHUtEAqKCTwB765t4+K21PLO8gvSUTtxz5QiuHTeQZF0yT6RDU8HHMXfnlY8387PXV7N9XwNXj83mjkuGkZHeJehoItIOqODjVOmWWoqKSymp3MWo7F7Mm1HAqOxeQccSkXZEBR9nauuaeGhJOc+uqKRXWhd+Pn0k3zo3myRNx4jIYVTwcSIUcl4qqeL+xeXsrmvk+vE5fP/iPHqmJe4l80Tk1Kjg48CnVbu5q/hzPt1Uy9jc05h9xXnk9+8RdCwRaedU8O3Yzv2N3P/Gal4sqSKzWwpzrxpN4ej+Oke7iLSKCr4dagk5z79fyYNvrmF/QzM3TRzEbRcNoXuqpmNEpPVU8O1MScVO7ioupax6D+cPPp3ZVwxnSJ/uQccSkTikgm8navbWc9/rq3n5o83075nKY9eNYeqIvpqOEZGTpoIPWFNLiPnLK5j71loam0PMnDyYmZPPJK2L/tOIyKlRiwRo+frtFBWXsrZmH5PyelN0+XAGZaYHHUtEEoQKPgBbdh/g3kWrWPhZNdkZXXlqRgFTzsrSdIyItCkVfAw1NLfw9O838sjb6wi5c/uUodx64RmkdtYl80Sk7angY2RpeQ2zXytj4/b9fD2/D7Om5ZOdkRZ0LBFJYCr4KKvaWcecBWUsKdvKoMx0nrlhLJPysoKOJSIdgAo+SuqbWnhi2XoeX7qe5CTjzkuHcePEXFI6aTpGRGJDBd/G3J0lZVuZs6CMTbsOMO3sfvz4srPo17Nr0NFEpIOJWsGb2a+AaUCNu4+I1jgAoVCImpoaGhoaSElJISsri6Sk2F9ceuP2/cx+rZSl5dsY2qcbz998HucPzox5DhERgGi24DPApVF8fSBc7itXrmT8+PHk5uYyfvx4Vq5cSSgUivbQX6prbOb+N1ZzyS/e5cOKXcyals/C2/5C5S4igYraHry7v2tmudF6/YNqamooLCyksrISgMrKSgoLC1mxYgV9+/aN6tjuzqKVX/DPC8uorq1n+pgB3Dk1j6zuqVEdV0SkNQKfgzezW4BbAAYOHHjCz29oaPiy3A+qrKykoaGhTfIdzdqteyl6tZTl63eQ368Hj1xzDgW5GVEdU0TkRARe8O7+JPAkQEFBgZ/o81NSUsjJyflKyefk5JCSktJ2IQ+xt76Jh99ayzPLK0hP6cQ9V47g2nEDSdYl80SknQm84E9VVlYWxcXFX07T5OTkUFxcTFZW2x5r7u781yeb+emi1Wzf18DVY7O545JhZKR3adNxRETaStwXfFJSEiNHjmTFihVRO4qmdEstd79ayv9U7GJUdi/mzShgVHavNnt9EZFoiOZhki8Ak4BMM9sEFLn709EYKykpKSpvqNbWNfHQknKeXVFJr7Qu/Hz6SL51bjZJmo4RkTgQzaNoronWa0dbKOS8VFLF/YvL2V3XyPXjc/j+xXn0TNMl80QkfsT9FE1b+7RqN3cVf86nm2oZm3sas684j/z+PYKOJSJywlTwETv3N3L/G6t5saSKzG4pzL1qNIWj++sc7SIStzp8wbeEnOffr+TBN9ewv6GZmyYO4raLhtA9VdMxIhLfOnTBl1Ts5K7iUsqq93D+4NOZfcVwhvTpHnQsEZE20SELvmZvPfe9vpqXP9pM/56pPHbdGKaO6KvpGBFJKB2q4JtaQsxfXsHct9bS2Bxi5uTBzJx8JmldOtRqEJEOosM02/L12ykqLmVtzT4m5fWm6PLhDMpMDzqWiEjUJHzBV9ce4J8XrmLhZ9VkZ3TlqRkFTDkrS9MxIpLwErbgG5pbePr3G3nk7XWE3Ll9ylBuvfAMUjvrknki0jEkZMEvLa9h9mtlbNy+n6/n92HWtHyyM9KCjiUiElMJVfBVO+u4Z0EZb5ZtZVBmOs/cMJZJeW17VkkRkXiRMAX/wgd/5O5XS0lOMu68dBg3TswlpZOmY0Sk40qYgs85PY2L8/vw48vOol/PrkHHEREJXMIU/PmDM3WRaxGRQ7TdVTFERKRdUcGLiCQoFbyISIJSwYuIJCgVvIhIglLBi4gkKBW8iEiCUsGLiCQoc/egM3zJzLYBlafwEpnA9jaK05aUq/XaYyZQrhPRHjNB4ubKcffeR3qgXRX8qTKzEncvCDrH4ZSr9dpjJlCuE9EeM0HHzKUpGhGRBKWCFxFJUIlW8E8GHeAolKv12mMmUK4T0R4zQQfMlVBz8CIi8ieJtgcvIiIRKngRkQQVFwVvZr8ysxoz+/woj5uZ/auZrTOzz8xszCGPfcfM1ka+vhPjXNdF8nxmZsvNbNQhj1WY2Uoz+8TMSmKca5KZ1UbG/sTM7jrksUvNrDyyLn8Qw0x3HJLnczNrMbOMyGPRXFfZZvbfZrbKzErN7B+PsExMt69WZor5ttXKXEFsW63JFdPty8xSzewDM/s0kmn2EZZJMbMXI+vjfTPLPeSxH0buLzezS046iLu3+y/gL4ExwOdHefwbwOuAAeOB9yP3ZwAbIv+eFrl9WgxznX9wPGDqwVyR7yuAzIDW1yRgwRHuTwbWA2cAXYBPgfxYZDps2cuBd2K0roBNxTUAAAcPSURBVPoBYyK3uwNrDv+ZY719tTJTzLetVuYKYts6bq5Yb1+RbaVb5HZn4H1g/GHL/B3wROT21cCLkdv5kfWTAgyKrLfkk8kRF3vw7v4usPMYixQC/+5hK4BeZtYPuARY4u473X0XsAS4NFa53H15ZFyAFcCAthr7VHIdwzhgnbtvcPdG4D8Ir9tYZ7oGeKEtxj0ed692948it/cCq4CvHbZYTLev1mQKYttq5bo6mmhuWyeaK+rbV2Rb2Rf5tnPk6/AjWgqB+ZHbvwUuMjOL3P8f7t7g7huBdYTX3wmLi4Jvha8BVYd8vyly39HuD8L3CO8FHuTAm2b2oZndEkCeCZE/H183s+GR+wJfX2aWRrgkf3fI3TFZV5E/kc8hvLd1qMC2r2NkOlTMt63j5Aps2zre+orl9mVmyWb2CVBDeEfgqNuVuzcDtcDptOG6SpSLbtsR7vNj3B9TZjaZ8C/hxEPuvsDdt5hZFrDEzFZH9nJj4SPC56/YZ2bfAP4LGEL7WF+XA//P3Q/d24/6ujKzboR/6f/J3fcc/vARnhL17es4mQ4uE/Nt6zi5Atu2WrO+iOH25e4twGgz6wW8YmYj3P3Q96Civl0lyh78JiD7kO8HAFuOcX/MmNnZwDyg0N13HLzf3bdE/q0BXuEk/wQ7Ge6+5+Cfj+6+COhsZpm0g/VFeC7yK38+R3tdmVlnwsXwnLu/fIRFYr59tSJTINvW8XIFtW21Zn1FxHz7cvfdwFL+fPruy3ViZp2AnoSnMdtuXbXlGwvR/AJyOfqbhpfx1TfBPojcnwFsJPwG2GmR2xkxzDWQ8PzZ+Yfdnw50P+T2cuDSGObqy58+5DYO+GNk3XUi/EbhIP70RtjwWGSKPH5wA0+P1bqK/Nz/Dsw9xjIx3b5amSnm21Yrc8V822pNrlhvX0BvoFfkdlfgPWDaYcvM5Ktvsr4UuT2cr77JuoGTfJM1LqZozOwFwu/OZ5rZJqCI8JsWuPsTwCLCRzqsA+qAGyKP7TSze4D/ibzUHP/qn2bRznUX4Tm1x8LvndDs4bPG9SH8JxuEN/zn3f2NGOb6JvC3ZtYMHACu9vCW1Wxmfw8sJnzUw6/cvTRGmQD+GnjT3fcf8tSorivgAuB6YGVkvhTgR4QLNKjtqzWZgti2WpMr5ttWK3NBbLevfsB8M0smPFPykrsvMLM5QIm7vwo8DfzGzNYR/h/P1ZG8pWb2ElAGNAMzPTzdc8J0qgIRkQSVKHPwIiJyGBW8iEiCUsGLiCQoFbyISIJSwYuIJCgVvLQ7ZrbvsO+/a2aPxnD88ZGz+30SOUPh3ZH7J5nZ+Sfxes+Y2TePs8yiyCceRdpMXBwHL9IWzCy5lccTzwf+l7t/GjmOOS9y/yRgH+EPw7Qpd/9GW7+miPbgJa6YWY6ZvW3h86C/bWYDI/d/ZS/54F8Bkb3u/zaz5wl/ECbdzBZGTob1uZlddYRhsoBqCJ9PxN3LIiex+hvg9sie/V8cY0wzs0fNrMzMFkZeDzO7yMxeOWT5i83s5cjtCjPLNLPcyF8NT1n4POJvmlnXyDJjIz/3H8zsATvKufVFDlLBS3vU1f50cYZPgDmHPPYo4VP3ng08B/xrK15vHPBjd88nfD6QLe4+yt1HAEf61OIvgHIze8XMbjWzVHevAJ4AfuHuo939vWOM99eE9/pHAjcTPnc7wDvAWWbWO/L9DcCvj/D8IcAv3X04sBuYHrn/18DfuPsE4KQ+2Sgdiwpe2qMDkRId7e6jCX8s/6AJwPOR27/hq2dRPJoPPHxebYCVwBQz+7mZ/YW71x6+sLvPAQqAN4FrOfL/BI7lL4EXInv/WwgXO5GP7P8G+HZkvn0CXz3N70Eb3f3gR+4/BHIjy3d394PTQ88f4XkiX6GCl3h38FwbzUS2ZwufWKTLIct8ee4Rd18DnEu46H9mh1xS7isv6r7e3R8HLgJGmdnpR1jsWGMe7Rwgvwa+TfiiE//p4fOAH67hkNsthN8rO9IpZEWOSQUv8WY5kZMyAdcBv4/criBc3BC+Ik7nIz3ZzPoDde7+LPAg4csIHr7MZZHChvB0SQvhqZK9hC8Jd9DRxnwXuNrCF3zoB0w++ITIHv0W4CfAM8f7YQ953i5gr5mNj9x19bGWFwEdRSPx5zbgV2Z2B7CNyJkdgaeAYjP7AHibQ/baDzMSeMDMQkAT8LdHWOZ64BdmVkd4L/06d28xs9eA35pZIfAPxxjzFeCvCP+VsAZYdtjrPwf0dveyE/vR+R7wlJntJ3x+8T+bXhI5lM4mKRJjkWP6P3b3p0/wed08cjENM/sB0M/d/zEaGSUxaA9eJIbM7EPCe/r/+ySefpmZ/ZDw720l8N02jCYJSHvwIiIJSm+yiogkKBW8iEiCUsGLiCQoFbyISIJSwYuIJKj/D0DOYfGd5thjAAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"sns.scatterplot(x, y, color='k')\n",
"sns.lineplot(x, yhat)\n",
"plt.xlabel('Hours Studying')\n",
"plt.ylabel('Score')"
]
},
{
"cell_type": "code",
"execution_count": 61,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Text(0, 0.5, 'Score')"
]
},
"execution_count": 61,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAEGCAYAAABvtY4XAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO3deXxV1bn/8c8TQghhnufkMAkElCkgjlURFSeurV61WK0dcrWT7bX2VmmZbOx1aOusxXmIVq+tPwZRBnGeEFSUAGFMwjwTAgFCkuf3xzlYxAAJ5JydnHzfr1denOyzz1lPNosvK2ufvZe5OyIiEn8Sgi5ARESiQwEvIhKnFPAiInFKAS8iEqcU8CIicSox6AIO1rp1aw+FQkGXISJSa8yfP3+Lu7ep6LkaFfChUIh58+YFXYaISK1hZvmHe05TNCIicUoBLyISpxTwIiJxSgEvIhKnFPAiInFKAS8iEqeiGvBm1tzMXjGzJWa22MxOiWZ7IiK1RXZ2NqFQiISEBEKhENnZ2dXeRrQ/B38f8Ia7X25mSUBKlNsTEanxsrOzyczMpLi4GID8/HwyMzMBGD16dLW1Y9G6H7yZNQUWAN28ko1kZGS4LnQSkXgXCoXIz//29UlpaWnk5eVV6b3MbL67Z1T0XDSnaLoBm4GnzOxzM3vczBpVUFymmc0zs3mbN2+OYjkiIjVDQUFBlbYfq2gGfCIwCHjE3QcCu4HfH7qTu09y9wx3z2jTpsLbKYiIxJXU1NQqbT9W0Qz4NcAad/8k8v0rhANfRKROy8rKIiXlm6ckU1JSyMrKqtZ2ohbw7r4BWG1mvSKbhgOLotWeiEhtMXr0aCZNmkRaWhpmRlpaGpMmTarWE6wQxZOsAGY2AHgcSAJWAte7+/bD7a+TrCIiVXOkk6xR/Ziku38BVNiwiIhEl65kFRGJUwp4EZE4pYAXEYlTCngRkTilgBcRiVMKeBGROKWAFxGJUwp4EZE4pYAXEYlTCngRkTilgBcRCcjmon0U7tkftfdXwIuIxNj+snKeeH8V59zzNn+dmRu1dqK9JquIiBzkoxVbGT8lh9yNRZx5QhuuOzUUtbYU8CIiMbC+cA93TF/C1AXr6NyiIZN+MJgR6e0ws6i1qYAXEYmiktLwdMwDc5ZRVu78+tye3PCd7iTXrxf1thXwIiJR8s7SzUyYksPKLbs5L70df7w4nS4tU47+wmqigBcRqWartxVz+7RFzFy0ka6tG/H09UM4q1fbmNehgBcRqSZ795fx93dW8vDby0kw43cX9OLHp3elQWL0p2MqooAXETlO7s7sxZuYOC2H1dv2cPFJHbjtwj50bN4w0LoU8CIix2HVlt1MmJrD27mb6dm2MS/89GRO7d466LIABbyIyDEpLinlwTnLefy9VTRITOCPF6dz7Slp1K9Xc64fVcCLiFSBuzP9qw386bVFrC/cy/cGdeZ/RvaibZPkoEv7FgW8iEglLdtYxLgpOXy4YivpHZrywNUDyQi1DLqsw1LAi4gcRdHe/dw3exlPf5hHowaJ3P4f/fj+0FTqJUTvKtTqoIAXETkMd+fVz9dyx/QlbN29j6uGpHLL+b1o2Sgp6NIqRQEvIlKBnHWFjJucw7z87Qzo0pwnf5jBSZ2bB11WlUQ14M0sDygCyoBSd8+IZnsiIsdrR3EJf521lOc/zqdFShJ3fe8kLh/cmYQaPh1TkViM4M929y0xaEdE5JiVlzsvz1vNXTNy2VFcwrWnhPjNuSfQLKV+0KUdM03RiEid98XqHYybvJAFawoZGmrJhFF96dOhadBlHbdoB7wDM83Mgb+7+6QotyciUmlbd+3jrjdyeWneato2acB9Vw3g0v4do3qP9liKdsCf5u7rzKwtMMvMlrj7uwfvYGaZQCZAampqlMsREYHSsnKyPyngLzNzKS4pI/PMbvxqeE8aN4ivSY2o/jTuvi7y5yYzexUYCrx7yD6TgEkAGRkZHs16REQ+zdvG2Mk5LF6/k9N7tGb8pen0aNsk6LKiImoBb2aNgAR3L4o8Pg+YGK32RESOZNPOvfz59SW8+vlaOjZL5pHRg7igX/u4mY6pSDRH8O2AVyMHLxF4wd3fiGJ7IiLfsr+snKc/yOPe2UvZX+b88pwe/OysHjRMCuYe7bEUtYB395VA/2i9v4jI0by/bAvjp+awfNMuzundlrEXpxNq3SjosmImvs4oiIgAa3fsIeu1RUz/agOpLVN44roMhvdpF3RZMaeAF5G4sa+0jMffW8WDc5bjODePOIGfntmN5PrxPx1TEQW8iMSFt5ZsYsLUHPK2FjOyX3vGXNSHzi1Sgi4rUAp4EanV8rfu5vZpi5i9eBPd2zTiuR8P5YyebYIuq0ZQwItIrbSnpIxH3l7Oo++upH6CcduFvfnhqV1JSqw5S+YFTQEvIrWKuzMjZwO3T1vM2h17GDWgI7eO7EP7ZjVvybygKeBFpNZYsXkX46fk8N6yLfRu34SXModxcrdWQZdVYyngRaTG27WvlAfmLOPJ91eRXL8e4y9J55phaSTW03TMkSjgRaTGcnemLFjHHdMXs3HnPv4zozO/u6A3rRs3CLq0WkEBLyI10pINOxk7OYe5q7ZxYqdmPHrNYAamtgi6rFpFAS8iNUrhnv38bdZSnvs4nybJidxx2YlcOaQL9WrhknlBU8CLSI1QXu688tka7nx9CduKSxh9cio3j+hFi0ZJQZdWayngRSRwX60pZOyUhXxesINBqc155kdD6depWdBl1XoKeBEJzPbdJdw9M5cX5xbQqlED/nJFfy4b2IkETcdUCwW8iMRcWbnz4twC7pmZS9HeUn50WlduOrcnTZPrB11aXFHAi0hMzc/fztjJC8lZt5Nh3VoycVQ/TmgXn0vmBU0BLyIxsbloH//7+hL++dka2jdN5oGrB3LxSR3iesm8oCngRSSqSsvKefajfP42ayl7S8u48azu/OLsHjRqoPiJNh1hEYmaj1ZsZfyUHHI3FnHmCW0Yf0k63do0DrqsOkMBLyLVbn3hHu6YvoSpC9bRuUVDJv1gMCPS22k6JsYU8CJSbUpKy3ni/VU8MGcZpeXOTcN7cuNZ3evsknlBU8CLSLV4Z+lmJkzJYeWW3YxIb8cfL0ontVXdXjIvaAp4ETkuq7cVc/u0RcxctJGurRvx1PVDOLtX26DLEhTwInKM9u4v4+/vrOTht5eTYMbvLujFj0/vSoNETcfUFAp4EakSd2f24k1MnJbD6m17uPikDtx2YR86Nm8YdGlyCAW8iFTaqi27mTA1h7dzN9OzbWNe+OnJnNq9ddBlyWEo4EXkqIpLSnlwznIef28VSYkJ/OGiPlx3aoj6WjKvRot6wJtZPWAesNbdL452eyJSfdyd6V9t4E+vLWJ94V6+O6gTvx/Zm7ZNkoMuTSohFiP4m4DFQNMYtCUi1WTZxiLGTcnhwxVbSe/QlAeuHkhGqGXQZUkVRDXgzawzcBGQBfx3NNsSkepRtHc/981extMf5tGoQSK3/0c/vj80VUvm1ULRHsHfC/wOOOy9QM0sE8gESE1NjXI5InI47s6rn6/lz68vYcuufVw1JJVbzu9FSy2ZV2tFLeDN7GJgk7vPN7OzDrefu08CJgFkZGR4tOoRkcPLWVfIuMk5zMvfTv8uzXn82gz6d2kedFlynKI5gj8NuNTMLgSSgaZm9ry7XxPFNkWkCnYUl/DXWUt5/uN8mqckcdf3TuLywZ21ZF6ciFrAu/utwK0AkRH8bxXuIjVDebnz8rzV3DUjlx3FJVx7SojfnHsCzVK0ZF480efgReqYL1bvYNzkhSxYU8jQUEvGX9qX9I76kFs8iknAu/vbwNuxaEtEKrZ11z7ueiOXl+atpm2TBtx31QAu7d9R92iPYxrBi8S50rJyXphbwD0zcikuKSPzzG78anhPGmvJvLinv2GROPZp3jbGTs5h8fqdnNajFRMu7UuPtof91LLEGQW8SBzatHMvf359Ca9+vpaOzZJ5ZPQgLujXXtMxdYwCXiSO7C8r5+kP8rh39lL2lzm/PKcHN57VnZQk/VOvi/S3LhInPli+hXFTcli+aRfn9G7L2IvTCbVuFHRZEiAFvEgtt3bHHu54bTGvfbWe1JYpPHFdBsP7tAu6LKkBFPAitdS+0jIef28VD85ZjuPcPOIEfnpmN5Lra8k8CVPAi9RCby3ZxISpOeRtLWZkv/aMuagPnVukBF2W1DAKeJFapGBrMROn5TB78Sa6tWnEcz8eyhk92wRdltRQCniRWmBPSRmPvLOCR99ZQf0E49aRvbn+tK4kJWrJPDm8Sge8mZ0O9HT3p8ysDdDY3VdFrzQRcXdm5Gzk9mmLWLtjD6MGdOTWkX1o30xL5snRVSrgzWwckAH0Ap4C6gPPE74lsIhEwYrNuxg/JYf3lm2hd/smvJQ5jJO7tQq6LKlFKjuCvwwYCHwG4O7rzEzXO4tEwa59pTwwZxlPvr+K5Pr1GH9JOtcMSyOxnqZjpGoqG/Al7u5m5gBmpqsnRKqZuzNlwTrumL6YjTv3ccXgzvzPyN60btwg6NKklqpswL9sZn8HmpvZT4EfAY9FryyRumXJhp2MnZzD3FXbOLFTMx65ZjCDUlsEXZbUcpUKeHe/x8xGADsJz8OPdfdZUa1MpA4o3LOfe2cv5dmP8mmSnMgdl53IlUO6UE9L5kk1OGrAm1k9YIa7nwso1EWqQXm588/P1nDnG0vYuruE0SencvOIXrRolBR0aRJHjhrw7l5mZsVm1szdC2NRlEg8+2pNIWOnLOTzgh0MSm3O09cPpV+nZkGXJXGosnPwe4GvzGwWsPvARnf/VVSqEolD23eXcPfMXF6cW0CrRkncc0V/vjuwEwmajpEoqWzAvxb5EpEqKit3XpxbwD0zcynaW8r1p3bl1yN60jS5ftClSZyr7EnWZ8wsCTghsinX3fdHryyR+DA/fzvjpixk4dqdDOvWkgmX9qNXe11CIrFR2StZzwKeAfIAA7qY2XXu/m70ShOpvTYX7ePON5bwyvw1tG+azANXD+TikzpoyTyJqcpO0fwFOM/dcwHM7ATgRWBwtAoTqY1Ky8p59qN8/jZrKXtLy7jxrO784uweNGqg+/pJ7FW219U/EO4A7r7UzDSBKHKQj1ZsZfyUHHI3FnHmCW0Yf0k63do0DrosqcMqG/DzzOwJ4LnI96OB+dEpSaR2WV+4hzumL2HqgnV0at6Qv/9gMOelt9N0jASusgF/I/Bz4FeE5+DfBR6OVlEitUFJaTlPvL+KB+Yso7TcuWl4T248q7uWzJMao7IBnwjc5+5/ha+vbtUdkKTOenfpZsZPyWHllt2MSG/HHy9KJ7WVlsyTmqWy9x99E2h40PcNgdlHeoGZJZvZXDNbYGY5ZjbhWIsUCUp2djahUIiEhARCoRAPPvUi//XcPK59ci4OPHX9EB67NkPhLjVSZUfwye6+68A37r7LzI7Wo/cB50T2rQ+8b2avu/vHx1qsSCxlZ2eTmZlJcXExlpjEjk6ncHdOMkn1N3DL+b35yRldaZCo6RipuSob8LvNbJC7fwZgZhnAniO9wN0dOPCfQv3Ilx9roSKxNmbMGIqLi2nYYygthmdSv3l7di9+F1s2g5//+YugyxM5qsoG/K+B/zOzdYRDuiNw5dFeFJmrnw/0AB5y908q2CcTyARITU2tZDki0beuaD9tLx9Pw+4ZlGzJZ+OLt7G34Eu26tMxUkscMeDNbAiw2t0/NbPewH8B3wXeAI664La7lwEDzKw58KqZ9XP3hYfsMwmYBJCRkaERvgSuuKSUh95aTscfPUR56X62vfkYRZ9Ng/IyQAMRqT2OdpL170BJ5PEpwG3AQ8B2IqFcGe6+A3gbuKDqJYrEhrvz2pfrGf6Xd3jorRUMbOVse/4miuZN/jrcU1JSyMrKCrhSkco5WsDXc/dtkcdXApPc/Z/u/kfC0y6HZWZtIiN3zKwhcC6w5HgLFomGZRuLGP34J/z8hc9okZLEKzecwqu/v4y/33s3aWlpmBlpaWlMmjSJ0aNHB12uSKUcbQ6+npklunspMJzIXHklX9sBeCYyD58AvOzu0469VJHqV7R3P/fNXsbTH+aRklSP20f15fsnp329ZN7o0aMV6FJrHS2kXwTeMbMthD818x6AmfUAjri6k7t/CQysjiJFqpu78+rna/nz60vYsmsfVw3pwm/P60Wrxrp+T+LHEQPe3bPM7E3Co/GZkY8+QnhE/stoFycSDTnrChk3OYd5+dvp36U5j1+bQf8uzYMuS6TaVWZN1m9dmOTuS6NTjkj0FBbv5y+zcnn+43yapyRx1/dO4vLBnbVknsQt3aRa4l55ufPyvNXcNSOXHcUlXHtKiN+cewLNUnTHa4lvCniJa1+s3sG4yQtZsKaQIaEWTLj0ZNI7Ng26LJGYUMBLXNq6ax93vZHLS/NW06ZJA+69cgCjBnTUPdqlTlHAS1wpLSvnhbkF3DMjl+KSMjLP7MYvz+lBk2RNx0jdo4CXuPFp3jbGTs5h8fqdnNajFRMu7UuPtk2CLkskMAp4qfU27dzLn19fwqufr6Vjs2QeGT2IC/q113SM1HkKeKm19peV8/QHedz35jJKSsv5xdk9+NnZ3UlJUrcWAQW81FIfLN/CuCk5LN+0i7N7tWHcJX0JtW4UdFkiNYoCXmqVdTv2kPXaYl77aj2pLVN44roMhvdpF3RZIjWSAl5qhX2lZTz+3ioenLMcx7l5xAn89MxuJNfXknkih6OAlxrvrSWbmDA1h7ytxYzs154xF/Whcwstci1yNAp4qbEKthYzcVoOsxdvolubRjz346Gc0bNN0GWJ1BoKeKlx9pSU8cg7K3j0nRUkJhi3juzN9ad1JSnxaOvTiMjBFPBSY7g7M3I2cvu0RazdsYdRAzpy68g+tG+WHHRpIrWSAl5qhBWbdzF+Sg7vLdtC7/ZN+EfmMIZ1axV0WSK1mgJeArV7Xyn3z1nGk++vIrl+PcZfks41w9JIrKfpGJHjpYCXQLg7U79cT9Zri9i4cx9XDO7M/4zsTWstmSdSbRTwEnNLNuxk3OQcPlm1jX6dmvLINYMZlNoi6LJE4o4CXmKmcM9+7p29lGc/yqdJciJ3XHYiVw7pQj0tmScSFQp4ibrycuefn63hzjeWsHV3CaNPTuXmEb1o0Sgp6NJE4poCXqJq4dpCxk5eyGcFOxiU2pynrx9Kv07Ngi5LpE5QwEtUbN9dwj0zc3lhbgGtGiVxzxX9+e7ATiRoOkYkZhTwUq3Kyp1/fFrA3TNyKdpbyvWnduXXI3rSVEvmicScAl6qzfz87YybspCFa3dycteWTBzVj17ttWSeSFAU8HLcNhft4843lvDK/DW0b5rMA1cP5OKTOmjJPJGARe1yQTPrYmZvmdliM8sxs5ui1ZYEo7SsnKc+WMU5f3mbyV+s5YbvdOfNm7/DJf07xk24Z2dnEwqFSEhIIBQKkZ2dHXRJIpUWzRF8KXCzu39mZk2A+WY2y90XRbFNiZGPV25l3OQccjcWcUbP1oy/tC/d2zQOuqxqlZ2dTWZmJsXFxQDk5+eTmZkJwOjRo4MsTaRSzN1j05DZZOBBd591uH0yMjJ83rx5MalHjs2Gwr3cMX0xUxaso1Pzhoy9JJ3z0tvFzYj9YKFQiPz8/G9tT0tLIy8vL/YFiVTAzOa7e0ZFz8VkDt7MQsBA4JMKnssEMgFSU1NjUY4cg5LScp78YBX3v7mM0nLnpuE9ueE73WmYFL9L5hUUFFRpu0hNE/WAN7PGwD+BX7v7zkOfd/dJwCQIj+CjXY9U3btLNzN+Sg4rt+zm3D7tGHtxOqmt4n/JvNTU1ApH8BqISG0R1Xuymll9wuGe7e7/imZbUv3WbC/mhufmc+2Tcyl356kfDuHx6zLqRLgDZGVlkZLyzZ81JSWFrKysgCoSqZqojeAtPCn7BLDY3f8arXak+u3dX8akd1fy0FvLSTDjlvN78ZMzutIgMX6nYypy4ETqmDFjKCgoIDU1laysLJ1glVojaidZzex04D3gK6A8svk2d59+uNfoJGuw3J03F29i4rRFFGwr5qKTOjDmwj50bN4w6NJE5DACOcnq7u8D8ffRiji1astuJk7N4a3czfRs25gXfnIyp/ZoHXRZInIcdCVrHVdcUspDby3nsXdXkZSYwB8u6sN1p4aoryXzRGo9BXwd5e68vnADf5q2iHWFe/nuwE78fmRv2jZNDro0EakmCvg6aNnGIsZPzeGD5Vvp06Ep9109kCGhlkGXJSLVTAFfhxTt3c/9by7jqQ/ySEmqx+2j+vL9k9O0ZJ5InFLA1wHuzv/7Yi13TF/Cll37uGpIF357Xi9aNW4QdGkiEkUK+DiXs66Q8VNy+DRvO/07N+OxazMY0KV50GWJSAwo4ONUYfF+/jIrl+c/zqd5ShJ3fu9ErhjcRUvmidQhCvg4U17u/N/81dz5Ri47ikv4wbA0/ntEL5qlaMk8kbpGAR9HFqzewdjJC1mwppAhoRZMuPRk0js2DbosEQmIAj4ObN21j7tn5PLSvNW0btyAe68cwKgB8bOqkogcGwV8LVZaVs4Lcwu4Z0YuxSVl/OT0rvxqeE+aJGs6RkQU8LXWvLxt/HFyDovX7+S0Hq0Yf0lferZrEnRZIlKDKOBrmU079/K/ry/hX5+vpWOzZB4ePYiR/dprOkZEvkUBX0vsLyvnmQ/zuHf2MkpKy/nF2T342dndSUnSX6GIVEzpUAt8sHwL46bksHzTLs7u1YZxl/Ql1LpR0GWJSA2ngK/B1u3YQ9Zri3ntq/V0admQx6/N4Nz0dkGXJSK1hAK+BtpXWsbj763iwTnLKXfnv0ecQOaZ3UiuX7eWzBOR46OAr2Heyt3EhCk55G0t5oK+7RlzUR+6tKwbi1yLSPVSwNcQBVuLmThtEbMXb6Rbm0Y8+6OhnHlCm6DLEpFaTAEfsD0lZTzyzgoefWcFiQnGrSN7c/1pXUlK1JJ5InJ8FPABcXdm5Gzk9mmLWLtjD5f278htF/ahfTMtmSci1UMBH4AVm3cxfkoO7y3bQq92TfhH5jCGdWsVdFkiEmcU8DG0e18pD8xZzhPvryQ5sR7jLknnB8PSSKyn6RgRqX4K+Bhwd6Z+uZ47XlvMhp17uWJwZ353QW/aNNGSeSISPQr4KMvdUMTYyQv5ZNU2+nVqysPXDGJQaougyxKROkABHyWFe/Zz7+ylPPtRPk2SE8m6rB9XDUmlnpbME5EYUcBXs/Jy55+freHON5awdXcJ3x+aym/P60WLRklBlyYidUzUzu6Z2ZNmtsnMFkarjQOys7MJhUIkJCQQCoXIzs6OdpMVWri2kMsf/ZBbXvmSLi1TmPqL08m67ESFu4gEIpoj+KeBB4Fno9gG2dnZZGZmUlxcDEB+fj6ZmZkAjB49OppNf2377hLumZnLC3MLaNUoiXuu6M93B3YiQdMxIhIgc/fovblZCJjm7v0qs39GRobPmzevSm2EQiHy8/O/tT0tLY28vLwqvVdVlZU7//i0gLtn5FK0t5TrTgnx6xE9aaol80QkRsxsvrtnVPRc4HPwZpYJZAKkpqZW+fUFBQVV2l5d5udvZ9yUhSxcu5OTu7Zkwqi+9G7fNKptiohUReAB7+6TgEkQHsFX9fWpqakVjuCP5T+LythctI8731jCK/PX0K5pA+6/eiCXnNRBS+aJSI0TeMAfr6ysrG/MwQOkpKSQlZVVre2UlpXz3Mf5/HXWUvbuL+OG73Tnl+f0oFGDWn8IRSRO1fp0OnAidcyYMRQUFJCamkpWVla1nmD9eOVWxk/JYcmGIs7o2Zrxl/ale5vG1fb+IiLRELWTrGb2InAW0BrYCIxz9yeO9JpjOckaTRsK93LH9MVMWbCOTs0bMvaSdM5Lb6fpGBGpMQI5yeruV0frvaOtpLScJz9Yxf1vLqO03LlpeE9u+E53GiZpyTwRqT1q/RRNdXt36WbGT81h5ebdnNunHWMvTie1lZbME5HaRwEfsWZ7MX+atpg3cjYQapXCUz8cwtm92wZdlojIMavzAb93fxmT3l3Jw28vxzBuOb8XPzmjKw0SNR0jIrVbnQ742Ys2MnHaIgq2FXPRSR0Yc2EfOjZvGHRZIiLVok4GfN6W3Uyctog5SzbRs21jXvjJyZzao3XQZYmIVKs6FfDFJaU8/NYKJr27kqTEBP5wUR+uOzVEfS2ZJyJxqE4EvLvz+sIN/GnaItYV7uW7Azvx+5G9ads0OejSRESiJu4DfvmmIsZNyeGD5Vvp06Ep9109kCGhlkGXJSISdXEb8EV793P/m8t46oM8UpLqcfuovlw9NJVETceISB0RdwHv7kz+Yh13TF/M5l37uDKjC7ec34tWjRsEXZqISEzFVcAvWreTcVMW8mnedvp3bsakazMY0KV50GWJiAQibgL+r7OW8uCcZTRPSeLO753IFYO7aMk8EanT4ibgu7RoyDXD0rh5RC+apWjJPBGRuAn4KzK6cEVGl6DLEBGpMfSREhGROKWAFxGJUwp4EZE4pYAXEYlTCngRkTilgBcRiVMKeBGROKWAFxGJU+buQdfwNTPbDOQfx1u0BrZUUznVSXVVXk2sCVRXVdTEmiB+60pz9zYVPVGjAv54mdk8d88Iuo5Dqa7Kq4k1geqqippYE9TNujRFIyISpxTwIiJxKt4CflLQBRyG6qq8mlgTqK6qqIk1QR2sK67m4EVE5N/ibQQvIiIRCngRkThVKwLezJ40s01mtvAwz5uZ3W9my83sSzMbdNBz15nZssjXdTGua3Skni/N7EMz63/Qc3lm9pWZfWFm82Jc11lmVhhp+wszG3vQcxeYWW7kWP4+hjXdclA9C82szMxaRp6L5rHqYmZvmdliM8sxs5sq2Cem/auSNcW8b1WyriD6VmXqinn/MrNkM5trZgsidU2oYJ8GZvZS5Jh8Ymahg567NbI918zOP6Yi3L3GfwFnAoOAhYd5/kLgdcCAYcAnke0tgZWRP1tEHreIYV2nHmgPGHmgrsj3eUDrgI7XWcC0CrbXA1YA3YAkYAGQHouaDtn3EmBOjI5VB2BQ5HETYOmhP3Os+1cla4p536pkXUH0raPWFYV7rlYAAAbkSURBVET/ivSXxpHH9YFPgGGH7PMz4NHI46uAlyKP0yPHqAHQNXLs6lW1hloxgnf3d4FtR9hlFPCsh30MNDezDsD5wCx33+bu24FZwAWxqsvdP4y0C/Ax0Lm62j6euo5gKLDc3Ve6ewnwD8LHNtY1XQ28WB3tHo27r3f3zyKPi4DFQKdDdotp/6pMTUH0rUoeq8OJZt+qal0x6V+R/rIr8m39yNehn2oZBTwTefwKMNzMLLL9H+6+z91XAcsJH8MqqRUBXwmdgNUHfb8msu1w24PwY8KjwAMcmGlm880sM4B6Ton86vi6mfWNbAv8eJlZCuGQ/OdBm2NyrCK/Hg8kPNI6WGD96wg1HSzmfesodQXWt452vGLdv8ysnpl9AWwiPBg4bN9y91KgEGhFNR2veFl02yrY5kfYHlNmdjbhf4SnH7T5NHdfZ2ZtgVlmtiQyyo2Fzwjfv2KXmV0I/D+gJzXjeF0CfODuB4/2o36szKwx4X/0v3b3nYc+XcFLot6/jlLTgX1i3reOUldgfasyx4sY9y93LwMGmFlz4FUz6+fuB5+HimrfipcR/Bqgy0HfdwbWHWF7zJjZScDjwCh333pgu7uvi/y5CXiVY/j161i5+84Dvzq6+3Sgvpm1pgYcL8LzkN/49Tnax8rM6hMOhmx3/1cFu8S8f1WipkD61tHqCqpvVeZ4RcS8f0XeewfwNt+ewvv6uJhZItCM8FRm9Ryv6j6xEK0vIMThTxpexDdPgs2NbG8JrCJ8AqxF5HHLGNaVSnju7NRDtjcCmhz0+EPgghjW1Z5/X+Q2FCiIHLtEwicKu/LvE2F9Y1FT5PkDnbtRrI5V5Od+Frj3CPvEtH9VsqaY961K1hXzvlWZuoLoX0AboHnkcUPgPeDiQ/b5Od88yfpy5HFfvnmSdSXHcJK1VkzRmNmLhM/OtzazNcA4wicscPdHgemEP+mwHCgGro88t83Mbgc+jbzVRP/mr2bRrmss4fm0h8PnTSj18F3j2hH+dQ3CHf8Fd38jhnVdDtxoZqXAHuAqD/eqUjP7BTCD8KcennT3nBjVBHAZMNPddx/00qgeK+A04AfAV5G5UoDbCAdoUP2rMjUF0bcqU1fM+1Yl64LY968OwDNmVo/wbMnL7j7NzCYC89x9CvAE8JyZLSf8n89VkZpzzOxlYBFQCvzcw9M9VaJbFYiIxKl4mYMXEZFDKOBFROKUAl5EJE4p4EVE4pQCXkQkTingpcYxs12HfP9DM3swhu0Pi9zZ74vIHQrHR7afZWanHsP7PW1mlx9ln+mRqx1Fqk2t+By8SHUws3qV/CzxM8B/uvuCyGeYe0W2nwXsInwxTLVy9wur+z1FNIKXWsXM0szsTQvfB/1NM0uNbP/GKPnAbwGRUfdbZvYC4QthGpnZa5GbYS00sysraKYtsB7C9xJx90WRm1jdAPwmMrI/4whtmpk9aGaLzOy1yPthZsPN7NWD9h9hZv+KPM4zs9ZmFor81vCYhe8hPtPMGkb2GRL5uT8ys7vtMPfWFzlAAS81UUP79+IMXwATD3ruQcK37j0JyAbur8T7DQXGuHs64XuBrHP3/u7eD6joqsW/Ablm9qqZ/ZeZJbt7HvAo8Dd3H+Du7x2hvcsIj/pPBH5K+N7tAHOAPmbWJvL99cBTFby+J/CQu/cFdgDfi2x/CrjB3U8BqnxVo9Q9CnipifZEQnSAuw8gfFn+AacAL0QeP8c376J4OHM9fE9tgK+Ac83sTjM7w90LD93Z3ScCGcBM4PtU/J/AkZwJvBgZ/a8jHOxELtl/DrgmMt9+Ct+8ze8Bq9z9wCX384FQZP8m7n5geuiFCl4n8g0KeKntDtxro5RIf7bwjUWSDtrn63uPuPtSYDDhoP+zHbSk3Dfe1H2Fuz8CDAf6m1mrCnY7UpuHuwfIU8A1hBed+D8P3wP8UPsOelxG+FxZRbePFTkiBbzUNh8SuSETMBp4P/I4j3BwQ3g1nPoVvdjMOgLF7v48cA/hZQQP3eeiSGBDeLqkjPBUSRHhJeEOOFyb7wJXWXixhw7A2QdeEBnRrwP+ADx9tB/2oNdtB4rMbFhk01VH2l8E9CkaqX1+BTxpZrcAm4nc2RF4DJhsZnOBNzlo1H6IE4G7zawc2A/cWME+PwD+ZmbFhEfpo929zMymAq+Y2Sjgl0do81XgHMK/JSwF3jnk/bOBNu6+qGo/Oj8GHjOz3YTvLf6t6SWRg+lukiIxFvlM/+fu/kQVX9fYI4tpmNnvgQ7uflM0apT4oBG8SAyZ2XzCI/2bj+HlF5nZrYT/3eYDP6zG0iQOaQQvIhKndJJVRCROKeBFROKUAl5EJE4p4EVE4pQCXkQkTv1/kdpB36co4SEAAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plt.scatter(x_test, y_test, color='k')\n",
"plt.plot(x_test, y_pred)\n",
"plt.xlabel('Hours Studying')\n",
"plt.ylabel('Score')"
]
},
{
"cell_type": "code",
"execution_count": 62,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.12"
}
},
"nbformat": 4,
"nbformat_minor": 4
}